

Time:	
Total Marks:	

25 minutes

24 marks

Year 12 Test 2

Thursday 29th April 2021

Resource Free

ClassPad calculators are Not permitted. Formulae Sheet is Permitted.

Name:

1. (2, 2 = 4 marks)

Differentiate the following with respect to x. Do not simplify.

a) $3x^2e^x$

 $6xe^x + 3x^2e^x$

b) $3e^{2x^3+1}$

 $3e^{2x^3+1} \cdot 6x^2$

2. (2, 2, 2, 1 = 7 marks)

a) Evaluate the following
$$\int \frac{\sqrt{x} + x}{x} dx$$
.
$$\int x^{-\frac{1}{2}} + 1 dx \checkmark$$

$$\int x^{-\frac{1}{2}} + 1 \, dx$$

= $2x^{\frac{1}{2}} + x + c$

b) Find Q in terms of p given that $\frac{dQ}{dp} = 4 - \frac{6}{p^3}$ and Q = -3 when p = 1.

$$\int 4 - 6p^{-3} dx$$

$$= 4p + 3p^{-2} + c$$

$$Q(1) = -3$$

$$\therefore c = -10$$

$$\therefore Q = 4p + \frac{3}{p^2} - 10$$

c)
$$\int 2x^{3}e^{x^{4}} dx$$
$$\frac{1}{2}\int 4x^{3}e^{x^{4}} dx$$
$$\frac{1}{2}e^{x^{4}} + c \qquad \checkmark \checkmark$$

d)
$$\frac{d}{dx} \int_{-2}^{x} \frac{t^2 + 3}{\pi - \sqrt{t}} dt$$

$$\frac{x^2+3}{\pi-\sqrt{x}} \checkmark$$

3. (1, 1, 2 = 4 marks)

The three regions between the curve y = f(x) and the *x*-axis have areas of *A*, *B*, and *C* units² as shown below. Determine the following definite integrals.

$$\checkmark$$
 \checkmark

4. (2 marks)

The function $f(x) = x^3 + 1$ is shown below.

a) Using the under-estimate with widths of 1 unit, approximate the area under f(x) for $1 \le x \le 3$. Show all working.

5. (2, 2, 3 = 7 marks)

The function f(x) is shown below.

a) Use the graph above to determine the following in exactly.

iii. If
$$\int_{k}^{8} f(x) dx = 0$$
, solve for k .

$$2(2 - k) + \pi = 8 - \pi \qquad k = 8 \checkmark$$

$$4 - 2k + \pi = 8 - 7)$$

$$\frac{2\pi - 4}{2} = k$$

$$k = \pi - 2 \checkmark$$

Time:		
Total Marks:		

20 minutes

20 marks

Year 12 Test 2

Thursday 29th April 2021

Resource Assumed

ClassPad calculators <u>are</u> permitted. Formulae Sheet is Permitted.

Name:

6. (2, 2 = 4 marks)

An imaginary radioactive isotope Coraronium decays at a rate of $\frac{dA}{dt} = -0.14A$ where A (kg)

is the amount of Coraronium remaining and t is in years.

a) If 2 kg of Coraronium exists originally, determine how much will remain after 10 years.

$$A = 2e^{-0.14t} \checkmark A(10) = 0.49 \ kg \checkmark$$

b) Determine the half life of Coraronium, that is the time it takes for the radioactive isotope to be reduced to 50%.

$$\frac{1}{2} = e^{-0.14t}$$

 $t = 4.95$ years

7. (1, 2 = 3 marks)

A population changes such that $\frac{dP}{dt} = -0.12P$, where *t* is in years.

a) Is the the population growing or decaying?

Decaying V

b) If the population is 120 000 after 8 years. Calculate (to the nearest 1000) the original population.

$$P = P_0 \cdot e^{-0.12t}$$

$$120000 = P_0 \cdot e^{-0.12(8)}$$

$$P_0 = 313000$$

8. (4 marks)

Given $f(x) = e^x$ and $g(x) = e^{-x}$ find the **exact** area of the regions enclosed by the two functions, x = -1 and x = 1. Show the use of a sketch in your solution.

9. (3, 2, 3, 1 = 9 marks)

A particle's is moving with rectilinear motion and its position can be modelled by the function $v(t) = 3t^2 - 12t + 9$ for $0 \le t \le 4$, where *v* is measured in metres/seconds and *t* is measured in seconds.

a) Determine when the velocity of the particle is maximised.

b) If the particle is initially at the origin determine an expression for the displacement.

$$x(t) = t^{3} - 6t^{2} + 9t + c$$

$$x(0) = 0 \quad \therefore c = 0 \checkmark$$

$$\therefore x(t) = t^{3} - 6t^{2} + 9t \checkmark$$

c) Determine the total distance travelled in the first 3 seconds.

$$v(t) = 0$$
 @ $t = 1$ & $t = 3$
 $x(0) = 0$
 $x(1) = 4$
 $x(3) = 0$
∴ dist = 8 m

d) Determine the change in displacement in the 2nd second.

